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Abstract 
An important mode of Grid operation is one in which a community or (as we call it here) 
a virtual organization (VO) negotiates an allocation from a resource provider and then 
disperses that allocation across its members according to VO policy. Implementing this 
model requires that a VO be able to deploy and operate its own resource management 
services within the Grid. We argue that a mechanism that allows for the creation, and 
subsequent monitoring and control, of managed computations provides a simple yet 
flexible solution to this requirement. We present an architectural framework that 
addresses the security, policy specification, and policy enforcement concerns that arise in 
this context. We also describe an implementation based on Globus Toolkit and Condor 
components, and present performance results. 

1 Introduction 
The emergence of Grids has seen the creation of a uniform infrastructure for sharing 
resources across organizational boundaries. As production deployments become more 
common and user communities become larger, usage patterns are shifting towards the 
creation of multi-purpose Grids whose resources are consumed by one or more virtual 
organizations (VOs) [13]. Requirements for scalability and flexibility in management 
make it important that resource providers be able to allocate resources (e.g., nodes on a 
compute cluster, disk space on a storage system, or CPU fraction on a single processor) 
to VOs rather than to individual users. The VO may then disperse its assigned resources 
among its members as it sees fit: for example, giving “analysis” activities higher priority 
than “simulations,” or project leaders greater access rights than students. In effect, the 
resource provider delegates to a VO (or, more specifically, to VO administrators) the 
right to control the use of a resource allocation by members of that VO. 

In such scenarios, we face the challenge of providing mechanisms by which the VO can 
manage its allocated resources: what VO members are allowed to use them, what tasks 
should be assigned to the available resources, and when should requested tasks be 
performed. The issues associated with VO resource management are similar to those that 
must be solved by each individual resource provider. However, the VO also has unique 
characteristics, due to its dynamic creation, adaptation over time, need to layer on an 
existing resource management framework and the need to federate decision making 
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across multiple resources in a scalable way. These unique characteristics dictate that 
specialized mechanisms are required. 

We are concerned here with identifying general mechanisms for deploying VO 
management solutions as part of VO establishment, for monitoring and controlling the 
execution of those mechanisms, and for managing interactions between VO decision 
making processes and the resources that they control. As we explain in Section 2, these 
mechanisms may be required to provide for the dynamic deployment of VO-specific 
components, the allocation of resources to those components to meet quality of service 
requirements, and the restart of those components following various forms of failure. 

We propose an architectural framework and an implementation approach that address 
these requirements. The framework is based on a construct that we call the managed 
computation, a computational activity that a client can create with specified persistence 
properties and resource constraints, and then monitor and manage, via operations defined 
within a managed computation factory interface (Section 3). The framework also 
addresses security issues relating to delegation and credential management (Section 4). 

Our implementation approach uses the Globus Toolkit version 4 (GT4) Web Services 
(WS) Grid Resource Allocation and Management (GRAM) service [9, 11] and the 
Condor resource manager [18, 19] within a service-oriented architecture, with Condor 
providing local monitoring and management functions and GRAM providing network 
access, security, policy callouts, and other related functions (Section 5).  

We show in Section 6 how the managed computation construct can be used to implement 
a use case in which a “VO resource manager” deployed as a managed computation on a 
“service node” submits jobs to a “cluster,” with the resources consumed by the VO 
resource manager constrained. Finally, we report on initial experimental results that 
evaluate our implementation from the perspectives of both performance and management 
effectiveness (Section 7), discuss related work (Section 8), and conclude (Section 9). 

We summarize the principal contributions of this work as follows: 

! A resource management architecture that allows for the dynamic deployment and 
subsequent management of VO-specific resource management logic, while 
addressing security, policy, and quality-of-service enforcement concerns. 

! An implementation approach that exploits features of GT4 and Condor. 

! Performance experiments that demonstrate that GT4 plus Condor can provide for 
effective enforcement of resource guarantees.  

2 Resource Management for Virtual Organizations 
Virtual organizations may be created and destroyed, with lifetimes varying from minutes 
to years. A VO’s membership may vary during its lifetime, as may the resources 
available to its members to accomplish their work. These dynamics, as well as normal 
evolution of mission, priorities and requirements, mean that VO-level policy with respect 
to membership and resource consumption will inevitably change over time. 

Such VO dynamics means that it is impractical for a VO-level resource management 
strategy to require the modification of policy at individual resource providers (for 
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example, by creating VO-specific task submission queues or creating local user accounts) 
each time a VO adds a member or alters its operational policy. Such an approach would 
suffer from poor responsiveness and scalability, and would also preclude the federated 
management of multiple VO resources. 

For these reasons, we advocate an alternative approach based on a separation of concerns 
between intra-VO resource management policy (e.g., “Ann has higher priority than Joe”) 
and resource provider policy towards a VO (e.g., “VO A has 30% of my CPU”). In this 
approach, resource providers are concerned solely with enforcing policies regarding VO 
access; intra-VO scheduling decisions are handled by separate VO-specific resource 
management infrastructures or VO resource managers (VORMs). Each VORM is 
responsible for arbitrating among requests issued by the users of its VO. Thus, we arrive 
at a two-level resource management scheme. End users issue requests to VORM(s), 
requesting that tasks be performed. If and when the VO policy indicates that a request is 
allowable, a VORM forwards the request to an appropriate resource provider for 
execution against the VO’s allocation. 

The dynamic nature of VOs dictates that we be able to deploy and manage such VORMs 
on demand with no human intervention required. Parsimony in architectural features 
dictates that the VORM be treated identically to any other VO task. Thus, from the 
resource provider perspective, a VORM should be initiated and managed using standard 
resource management interfaces. The resource used by a VORM may be constrained, the 
VORM must be managed, and the VORM may be subject to policy enforcement, just like 
any other task managed by the resource. The interaction between VORM and resource 
provider should also not be specialized: a VORM should initiate VO tasks using the same 
standard resource management interfaces used to create the VORM. However, from the 
perspective of its VO, a VORM fulfills a vital infrastructure function and hence (in 
contrast to other VO tasks) it is important that the VORM be robust to transient failures 
so that they can provide a persistent capability to the VO. 

The actual function of a VORM may be highly specialized to a particular VO, or it may 
provide generic behaviors such as simple batch scheduling. Our primary concern is not 
VORM behavior, but rather the creation of standard mechanisms by which these 
behaviors can be deployed onto an existing Grid-wide resource management framework.   

3 The Managed Computation 
We now turn to the question as to how to provide uniform mechanisms by which a VO 
can deploy and operate a VO specific resource management infrastructure. VO-specific 
management environments deployed in current production Grids are based on 
customized, hand-crafted deployments that cannot easily be ported to other environments. 
Furthermore, because they do not use common underlying Grid mechanisms, they cannot 
respond easily to the dynamics of the VO lifecycle. These considerations motivate the 
approach considered here, which is to use established Grid infrastructure mechanisms to 
address VO resource management requirements.  

With this goal in mind, we propose to meet the requirements outlined in Section 2 via a 
single abstraction that we call a managed computation. A managed computation is one 
that we can start, stop, terminate, monitor, and/or control. It adheres to, and runs within, a 
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local resource security, auditing, and accounting infrastructure. It is subject to policy 
enforcement, including resource provisioning agreements. As we discuss below, we 
define these management functions in terms of a managed computation factory interface 
that defines operations that a client can use to request the creation, monitoring, and 
control of managed computations. A resource manager controls the managed 
computation and enforces site policies. As we will see in Section 5, the existing widely 
used GRAM interface already implements a managed computation factory interface, and 
thus implementing this interface is straightforward.  
This managed computation construct can be applied pervasively to the design of the VO 
resource management environment discussed above: 

! A VORM runs on a physical resource provided by a resource owner. To control the 
resource consumption, the VORM is structured as a computation managed by the 
resource provider. As a managed computation, the VORM may also request that the 
manager ensure that it is restarted in the case of failure. 

! The VORM accepts requests from its VO’s user community. As it services these 
request, the VORM may need access to additional functions, such as job staging, data 
movement, and job submission. These functions can be provided to the community as 
additional managed computations.  

! As part of its operations, the VORM may request that operations take place on other 
resources. Such requests can be structured as requests to other entities to create new 
managed computations, such as compute tasks on a cluster. 

The important point to take away from this discussion is that the entire VO resource 
management architecture can be rendered in terms of the creation and operation of 
managed computations for different purposes. There is no need to introduce any other 
special architectural or implementation concepts. In brief:  

! We view all computations as managed regardless of the resource on which they 
execute, be it (for example) a “service node” (for a VORM) or a “compute cluster” 
(for a task submitted via a VORM). Indeed, in the managed computation model, there 
is no distinction between the two. 

! We use standard interfaces to managed computation factories to request the creation 
of managed computations and to control those computations subsequently, regardless 
of whether those computations are VORMS to be created for VOs or jobs to be run on 
computational clusters on behalf of a VORM (acting on behalf of its VO’s users). 

Managed computations are created by a class of network service that is generically 
referred to as a managed computation factory. As with any network service, the managed 
computation factory’s behavior is defined completely in terms of its interface. This 
interface defines operations that a client can use to negotiate the following capabilities: 

! Deployment: Creation of a managed computation on a computational resource. 

! Provisioning: Specification of how many resources may be consumed by the 
computation, and in what way. 
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! Persistence: Specification of what to do if the environment in which the computation 
is executing, or the computation itself, fails. 

! Monitoring: Client monitoring of managed computations. 

! Management: Client control over computation lifetime. 

A computation created by a managed computation factory may itself define a network 
interface and thus operate as a service, in which case we may refer to it as a managed 
service. In addition, a service created by a managed computation factory may itself be a 
managed computation factory. Indeed, this is a good way to think about a VORM, if its 
function is (as is often the case) to create computations on other resources for its VO. 

Figure 1 illustrates the major components of a managed computation factory: 

! The factory service proper provides the interface to the network, formatting and 
exchanging messages, and implements the overall control of managed computation 
factory function. The interface to the managed computation factory defines the 
functions available to a management client. These functions include the ability to 
create, configure, and destroy a managed computation. 

! A policy module determines authorization, resource constraints, and persistence 
policy. In particular, the policy module is used to determine if a managed 
computation request (e.g., to create a VORM) is consistent with the operational 
policy of the resource provider that is to host the managed computation.  

! A resource manager. This resource-specific management system is responsible for 
creating the managed computation, enforcing persistence and policy, and 
implementing management operations such as service termination or suspension. The 
managed computation factory interacts with the resource manager via manager-
specific commands and protocols. 
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Figure 1: The managed computation factory 

4 Security Issues in VO Scheduling 
Five entities or principals can potentially participate when a VO user submits a request to 
a VORM to run a task on their behalf on some computational resource:  

1. the VO user who submits tasks to be scheduled,  

2. the VORM resource provider who hosts the VORM,  

3. the VO administrator who initiates the creation and operation of the VORM,  
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4. the task resource provider who hosts the tasks requested by the VO user, and   

5. the VO resource consumer who submits the job to the task resource provider, 

Techniques for establishing the identity of participants in a distributed Grid environment 
such as the Grid security infrastructure [12] are well established and widely deployed [4]. 
Approaches by which finer grain policy decisions may be made via attribute assertions 
[16] are becoming more widespread [5, 27]. The use of attributes (or roles) in addition to 
identities can provide for greater flexibility and scalability in the resulting environment, 
and may be especially useful in identifying VO users as well as distinguishing which 
members may fill roles such as VO administrator and resource consumer.  

A VORM is initiated by a VO administrator. The VO administrator must (mutually) 
authenticate with the VORM resource provider, providing any attributes necessary to 
identify the user in the VO administrator role. (Because the allocation of resources to the 
VO is an agreement between the resource provider and the VO, it is ultimately up to the 
resource provider to determine which attributes may be required.) Once authenticated, the 
VO administrator can initiate a managed task. This task runs with the rights of the VO 
administrator, the most important of which is the ability to consume resources allocated 
to the VO on the scheduler resource provider.  

In order to submit a task to a VORM, VO users must identify themselves to the VORM. 
The same mutual authentication methods used for authenticating the VO administrator to 
the resource provider may be used for this purpose. Based on this authentication and any 
associated attributes asserted by the user or other sources, the VORM may apply policy 
to determine if the requestor is in fact currently a VO member, and if so, what scheduling 
policy should be assigned to the requested task. 

If policy indicates that the VO user’s task request should be executed, then task 
submission to the task resource provider can occur via one of two methods: 

1. The VORM can use the managed computation creation interfaces to cause the 
schedulable task to execute on a target resource.  

2. The VORM can instead not submit the task to the target resource itself, but rather 
grant the user permission to submit the task directly. 

In the first case, the VORM submits the task under the identity of a VO resource 
consumer using credentials provided to the VORM when it was created. (See Section 5.1 
for how this task can be done using the GT4 GRAM service.) The advantage of this 
approach is that VO membership is determined only by the VORM; members may be 
added or deleted without involving the target resource provider. A disadvantage is that 
the use of VO resource consumer credentials can complicate data staging operations in 
which data owned by the submitting user is transferred to the target resource. In non-VO 
deployments, the user simply delegates to the target resource user credentials that may be 
used to access remote data. However, if (as here) the target resource does not have the 
user’s credentials, then alternative mechanisms are needed. 

In practice, the resource provider may require the identity of the requesting user for 
auditing purposes, or to apply additional policy such as black list enforcement. For this 
reason, the resource provider may require that the VORM provide the identity of the 
original user as part of the request. 
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In the second approach listed above, the VORM acts in a manner similar to a community 
authorization service [22] or SHARP [15], providing the user with a cryptographically 
signed credential authorizing the user to consume resources on the task resource provider 
on behalf of the VO. Because the user must authenticate to the resource directly, this 
approach may be desirable when it is important to know the identity of the requesting VO 
user and the resource provider does not trust the VO to report this identity accurately. 
This approach also eliminates data staging complexities. However, this approach places a 
greater burden on submitting users, and precludes certain scheduling strategies, such as 
those in which the VORM queues jobs or manages submitted jobs.  

5 A Managed Computation Framework Implementation  
We describe here how a managed computation framework that meets our requirements 
can be implemented by using a combination of the GT4 GRAM service and Condor 
resource manager. In brief, we use GT4 GRAM as the managed computation factory 
service and Condor as the local resource manager. 

5.1 GT4 GRAM Service as a Factory  
GT4 WS GRAM is a Web Service that implements operations for creating—and 
subsequently monitoring and controlling—computations specified by a Job Description 
Schema. The interface uses operations standardized in the Web Services Resource 
Framework and WS-Notification [10] specifications for such purposes as monitoring, 
notification, and lifetime management. In addition, a GGF-standard authorization callout 
allows for flexible authorization policy [29]. GRAM includes the use of a delegation 
service [28], which allows the initiator of a managed computation to enable the resulting 
computation to perform actions on behalf of the initiator or any other principal that has 
provided delegated credentials.  

GT4 WS GRAM applies policy and then dispatches approved requests to a local resource 
management system for local scheduling and policy enforcement. A wide range of 
resource managers, such as PBS, SGE, LSF, or Condor can be used, depending on the 
target environment. In a clustered environment, these managers typically operate in a 
space-shared mode, providing tasks with exclusive access to a resource. However,  
GRAM can also be used to deploy and manage computations onto non-space shared 
systems. In such systems, GRAM is often configured to use a best effort resource 
management strategy (GRAM’s “fork gatekeeper”) by which jobs are simply forked and 
scheduled by the operating system. However, shared resources can also be managed by a 
resource manager to provide more fine-grained policy and enforcement. We explore here 
the use of Condor as a local resource manager. Thus, while GRAM is sometimes viewed 
simply as a “job submission service,” i.e., as a service for submitting jobs to batch 
schedulers, it more properly viewed as a general-purpose managed computation factory. 

5.2 Condor as a Resource Manager 
Condor provides mechanisms for scheduling tasks onto a pool of resources. It takes 
descriptions of required and offered resources and schedules them via a matchmaking 
mechanism [23]. Condor can be configured to offer both space sharing resource 
management in which only one task is matched to a resource at a time, or by using a 
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virtual processor abstraction be configured to enable multiple tasks to be scheduled to a 
processor. In both cases, tasks initiated by Condor are monitored to ensure that policy 
requirements of the resource provider are enforced on a per (virtual) machine basis.  

When exclusive access is offered, the policy tends to be simple, stating when a task can 
be mapped to the resource, how long it can run, and under what conditions the task may 
be terminated. The situation tends to be more complex in the time shared mode, when 
more then one task can be allocated to a resource. In this case the policy may specify both 
the maximum number of managed computations that can execute at one time and the 
maximum load that any one computation can apply to the node on which it executes. A 
request to create a computation is delayed or denied if the maximum number of 
computations has been reached; a computation that generates more than the maximum 
load is suspended or terminated. (See Section 7 for more details on the configuration.)  

5.3 Persistence 
Infrastructure services are those services that are critical to the operation of an 
organization. For example, GRAM may be critical to a resource provider, and a VORM 
to a VO. In the present context, we need to be able to ensure that the managed 
computation factory (GRAM), associated resource manager (e.g., Condor), and any 
managed computations (e.g., VORMs) persist beyond failure.  

Both GT4 WS GRAM and Condor are themselves fault-tolerant, meaning that they can 
reinitialize their state from stable storage when restarted. Thus, if the platform on which 
GRAM and Condor execute should fail, both systems can be restarted and will reconnect 
themselves to all their active and submitted tasks. Beyond these capabilities, we need the 
ability to cause infrastructure services being managed by the resource manager to be 
restarted. Condor provides this capability, However, restart places responsibility on the 
managed computation, requiring it to checkpoint its state; thus the Condor mechanism 
cannot be applied blindly. In addition, persistence properties may be driven by policy 
statements that specify, for example, how often a service should be restarted after specific 
types of failures. Thus, we enable automatic restart for a managed computation only if 
requested by including a PERSISTENCE option in the job description provided to 
GRAM. This request is passed on to the local resource manager. 

5.4 Implementing VORMs 
One reason for deploying a VORM is to enable more scalable mechanisms for enforcing 
VO policy. However, a second motivation can be to create a different VO-specific 
resource management regime within the general-purpose Grid infrastructure. We 
illustrate this point by describing two alternative VO scheduling implementations. Of 
course, there are many other possibilities beyond the two described here.  

5.4.1 A Condor-Based VORM 
Condor provides a scheduling regime based on a ranked matching of task requirements to 
resource capabilities. At the heart of this system is a scheduling deamon (schedd) to 
which a user submits job requests, which are subsequently matched to, and executed on 
appropriate execution resources. Condor includes a version of schedd, called Condor-
C, that can accept jobs from other schedds and be deployed dynamically [26].  
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To realize this scenario, we use our managed computation factory service to initiate a 
schedd, configured to register into a VO-wide Condor pool. A VO user can then submit 
a job to their local Condor pool, and the job will flow from that pool to the dynamically 
deployed schedd using Condor-C. The schedd submits the job to the computational 
resource for eventual execution using existing Condor mechanisms for accessing GRAM-
mediated resources. We explore the performance of this scenario in Section 7. 

Note that as we also use Condor in our managed computation factory service 
implementation, this use of Condor as a VORM means that we have two separate Condor 
deployments that are used in distinct ways. First, as described in Section 5.2, we use 
Condor as a resource manager for managed computations, such as VORMs. Second, we 
use Condor as a VORM implementation. The latter completely separate Condor 
deployment has no connection whatsoever with the Condor used as resource manager. 

5.4.2 A GRAM-Based VORM 
An alternative approach to VO resource management uses a GRAM-style VORM. Here, 
we use the managed computation interface to deploy a new GRAM service, which we 
configure according to VO policy requirements. The result is a management service with 
a GRAM interface that the VO user can use to submit jobs. The VO GRAM service can 
then in turn use a GRAM interface to consume resources offered by the target resource 
provider. This embedded GRAM approach has the advantage that VO applications 
written to the GRAM interface can operate in the VO environment without modification: 
in effect, what we achieve is a transparent virtualization of the underlying infrastructure 
into the VO space. 

6 Deployment Scenarios 
The use of standard remote task deployment and management interfaces for deployment 
of VORMs and for connecting VORMs to underlying resource providers gives us great 
flexibility with respect to where VORMs and user tasks are placed. For example, we 
often wish to place a VORM that is associated with a single target resource near that 
resource—perhaps on a service node (or, as it sometime called, a head node) associated 
with a computational cluster, or even on the target resource. In other configurations, a 
VORM may be associated with (and thus may select from among) more than one target 
resource. In such cases, we may wish to either collocate the VORM with one target 
resource, or place it on yet another resource that is “near” the target resources. 

 

The beauty of the service-oriented approach is that no changes are required to our system 
implementation to accommodate these different configurations. Indeed, our use of 
standard interfaces means that a VORM need not create managed computations on an 
actual piece of physical hardware, but can instead interact with another nested VORM. 
Thus, a VO can blend strategies: collocating VORMs close to the target resource for 
reasons of performance and robustness, and using a higher-level VORM to select 
between alternative resources. 
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Client-side 

 
We show in Figure 2 one possible scenario in which we have one managed computation 
factory, GRAM-1, used to create VORMs, and two managed computation factories, 
GRAM-2 and GRAM-3, used to create computational tasks on attached clusters. The 
three GRAMs may be located on the same or different computer: if GRAM-1 is located 
on a service node associated with a cluster, and GRAM-2 and GRAM-3 provide access to 
that cluster, then the three GRAMs may be located on the same computer. Regardless of 
the precise configuration, the interactions proceed as follows: 

1. The VO administrator uses the delegation service interface to make delegated 
credentials for the VO available to the GRAM services managing the service node 
and the computational cluster. 

2. The VO administrator uses the GRAM interface to request that a VORM be created 
on the service node. This request may specify desired restart policy, and includes a 
reference to the delegation service on the compute nodes to which the VORM will be 
submitting jobs. The VO administrator is returned a handle with which it can monitor 
and control the new VORM. The service node resource manager enforces site policies 
relating to resource consumption (e.g., how much CPU and memory the VORM may 
consume) and may restart the VORM if the node fails and suspend or kill the VORM 
if site policies concerning resource consumption are violated. 

3. A VO user authenticates to the VORM using their own credentials and submits jobs 
using a VORM-specific submission protocol such as Condor or GRAM. The VORM 
is responsible for queuing the job. 
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Notes:  

• VO admin delegates credentials to be used by downstream VO services. 
• VO admin starts the required services. 
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• VO job gets forwarded to the appropriate resource using the VO credentials 
• Computational job started for VO
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Figure 2: VORM deployment scenario with one “service node” and two remote compute clusters 
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4. The VORM selects a job to execute and performs any setup that may be required, 
such as staging files. Any activity that the VORM performs on the service node is 
constrained by the policy enforced by the service node resource manager. Any 
operations performed by the VORM on remote nodes is constrained by the resource 
managers (if any) operating on those nodes. 

5. The VORM uses GRAM to submit the VO job to the compute cluster. The job is 
submitted with VO or user credentials, depending on local policy, and is executed 
under a local account as determined by whatever mapping functions have been put in 
place by the resource owner (e.g., mapfile, dynamic account creation). The VORM 
uses the compute cluster’s delegation service to delegate credentials to the job.  

7 Experimental Studies 
We conducted experiments to evaluate the suitability of our architecture and 
implementation when a VORM runs on a shared service node (or head node) that acts as 
a submit point for an associated computational cluster. GT4 WS GRAM on the service 
node provides two managed computation factories, one for computations on the service 
node and one for computations on the associated cluster. As described above, Condor is 
used as the resource manager for computations running on the service node. PBS is used 
to manage computations running on the cluster.  

We used a Condor-C scheduler [26] as the VORM, as described in Section 5.2; this 
component is deployed dynamically using the GT4 GRAM computation factory 
interface. Note that this Condor-C VORM is completely independent of the Condor 
environment used to control the managed computations on the service node. We ran 
experiments on dual 2.2Ghz Intel Xeon machines running Red Hat 9 and Debian Sarge. 
Each machine had 1 GB RAM and a gigabit network connection. 

In order to understand the effectiveness of managed computations for VO resource 
management, we measured how end-to-end VO job throughput varied with competing 
load from other activities on the service node. Figure 3 summarizes the results of this 
experiment, showing job throughput achieved by a Condor-C VORM process in both 
managed and unmanaged scenarios, as it repeatedly executed a trivial job on the 
computational cluster in the presence of increasing load. The load was caused by 
“misbehaving” processes, i.e., processes responsible for contributing to system load in 
excess of a prescribed limit. We see that, as expected, the performance in the unmanaged 
case collapses as the number of misbehaving jobs increases. However, in the managed 
cases we are able to prevent complete performance collapse by applying different 
management policies.  

We experimented with two such policies. The first policy, applied to all computations on 
the service node, was as follows: “if the system load exceeds 10 and a managed 
computation’s contribution to this load exceeds a prescribed threshold [a load of 3 for 
these experiments], then suspend the computation until the load is below the threshold”. 
As can be seen in the figure while this policy certainly introduced some overhead, it also 
lead to a much more graceful performance degradation. A better policy proved to be to 
additionally impose a penalty of at least 10 minutes suspension on all misbehaving 
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processes. In this case, the degradation was much better controlled although still 
observable as the load increased.  

This shows that in practice the types of policy that can be applied –  as well as the extent 
to which they can be effective – will strongly depend on the tools used to enforce them. 
In our case, a stricter policy compensated for the coarse-grain measurements used for 
load calculation as well as coarse-grain enforcement mechanisms. We also note that these 
mechanisms are not sufficient for tight levels of control: in the best case job throughput 
rate varies from nine jobs per second to slightly less then five. Alternative local resource 
managers such as hypervisor based solutions may be able to reduce this variability.  
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Figure 3: Throughput for a Condor-C VORM under load, when managed and unmanaged 

As a baseline, we can compare the results of the managed, end-to-end solution with the 
throughput achieved when the same trivial jobs are submitted directly to a GRAM-
mediated computational factory on the cluster. In this case, we see throughputs of 
approximately 10 jobs per minute. We conclude that the use of VORMs as managed 
computations need not negatively impact the throughput performance of the overall job 
management solution. In addition, we observe that the proposed solution can be extended 
easily to support multiple service nodes and multiple computational factories for 
computational resources. Hence, deployments can be engineered that can provide 
significantly higher levels of performance. (GT4 GRAM performance can also be 
improved: in a somewhat different configuration, we achieve 70 jobs per minute.) 

8 Related Work 
Many distributed system architectures and deployments separate management concerns 
between resource provider and VO in various ways. The concept of a “resource broker” 
is old and widespread [2, 20, 21]. Dumitrescu and Foster [8] describe and evaluate an 
architecture in which VO resource managers interact with resource providers on behalf of 
VO users. However, they focus on VO resource management strategies, not the managed 
service implementation issues considered here. Thain and Livny [26] use GRAM to 
deploy Condor agents directly to computational nodes, an approach that can provide 
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significant performance benefits [25]. This “glide in” technique can be viewed as a 
special case of our more general approach.  

At the interface and implementation level, PlanetLab [3] provides a programmatic 
interface for allocating execution environments (“slices”) on distributed computers, but 
not for managing the physical resources allocated to those environments or for starting or 
managing computations in those environments (other than via SSH). InVigo [1] provides 
for the managed deployment of virtual machines; however, the focus is on deploying 
applications not VO services.  

The Xenoserver design [14] addresses the deployment and management of services and, 
as the authors point out, can be used to realize the concepts described here. Keahey et al. 
[17] describe a virtual workspace abstraction that is yet more general than our managed 
computation, supporting the configuration of arbitrary virtual machines. The GRAM 
design described here has evolved from an early job submission interface [6], influenced 
by thoughts on resource and service management [7]. 

As discussed in Section 4, capability-based systems such as CAS [22] and SHARP [15] 
represent an alternative authorization approach, in which a client obtains a ticket from a 
broker and then presents that ticket to a resource provider. 

9 Summary and Next Steps 
We have described an approach to deploying community-specific resource management 
logic (“Virtual Organization Resource Managers,” or VORMs) within a distributed 
computing infrastructure. Our approach addresses, at the architecture and implementation 
levels, the security and management issues required for this deployment to occur in a 
secure, robust, and performant manner. 

From an architectural perspective, our approach has the advantage of being a pure 
service-oriented architecture. Individual components can be composed easily into higher-
level components and configured into a wide variety of physical deployment strategies. 
Thus, we can easily deploy VORMs onto arbitrary service nodes or onto cluster nodes, 
create VORMs near or far from the resources to which they provide access, and build 
VORMs that schedule across multiple computing resources. 

Our implementation approach is also elegant. In particular, it has the advantage of 
leveraging existing GT4 and Condor components unmodified, with the sole exception of 
a job description extension to specify persistence. In addition, our implementation can 
leverage the GT4 security implementation without modification, including GSI, 
delegation service, and interfaces to SAML-based policy processing engines. 

In future work, we wish to explore the use of virtual machine technology [24] to provide 
finer-grained control over policy enforcement on managed computations. (While 
Condor’s widespread use and ease of configuration are advantages for a resource 
manager, the fact that it builds on traditional operating system mechanisms limits the 
degree of control and policy enforcement it can apply to shared resources.) We will also 
explore demand-driven provisioning of service nodes to meet user demand and support 
for management of distributed services. 
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